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hdi-package hdi

Description

Implementation of multiple approaches to perform inference in high-dimensional models.

Details

The DESCRIPTION file:

Package: hdi
Type: Package
Title: High-Dimensional Inference
Version: 0.1-9
Date: 2021-05-27
Author: Lukas Meier [aut, cre], Ruben Dezeure [aut], Nicolai Meinshausen [aut], Martin Maechler [aut], Peter Buehlmann [aut]
Maintainer: Lukas Meier <meier@stat.math.ethz.ch>
Description: Implementation of multiple approaches to perform inference in high-dimensional models.
Depends: scalreg
DependsNote: scalreg does not correctly import lars etc, so we need to depend on it
Imports: grDevices, graphics, stats, parallel, MASS, glmnet, linprog
Suggests: Matrix
SuggestsNote: for tests only
Encoding: UTF-8
License: GPL

Index of help topics:
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boot.lasso.proj P-values based on the bootstrapped lasso
projection method

clusterGroupBound Hierarchical structure group tests in linear
model

fdr.adjust Function to calculate FDR adjusted p-values
glm.pval Function to calculate p-values for a

generalized linear model.
groupBound Lower bound on the l1-norm of groups of

regression variables
hdi Function to perform inference in

high-dimensional (generalized) linear models
hdi-package hdi
lasso.cv Select Predictors via (10-fold)

Cross-Validation of the Lasso
lasso.firstq Determine the first q Predictors in the Lasso

Path
lasso.proj P-values based on lasso projection method
lm.ci Function to calculate confidence intervals for

ordinary multiple linear regression.
lm.pval Function to calculate p-values for ordinary

multiple linear regression.
multi.split Calculate P-values Based on Multi-Splitting

Approach
plot.clusterGroupBound

Plot output of hierarchical testing of groups
of variables

rXb Generate Data Design Matrix X and Coefficient
Vector beta

riboflavin Riboflavin data set
ridge.proj P-values based on ridge projection method
stability Function to perform stability selection

Author(s)

Lukas Meier, Ruben Dezeure, Nicolai Meinshausen, Martin Mächler, Peter Bühlmann, Maintainer:
Lukas Meier <meier@stat.math.ethz.ch>

References

Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015) High-dimensional inference:
confidence intervals, p-values and R-software hdi. Statistical Science 30, 533–558.

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression.
Journal of the American Statistical Association 104, 1671–1681.

Meinshausen, N. (2015) Group-bound: confidence intervals for groups of variables in sparse high-
dimensional regression without assumptions on the design. Journal of the Royal Statistical Society:
Series B, 77(5), 923–945.

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). Journal of the
Royal Statistical Society: Series B 72, 417–473.
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boot.lasso.proj P-values based on the bootstrapped lasso projection method

Description

Compute p-values based on the lasso projection method, also known as the de-sparsified Lasso,
using the bootstrap to approximate the distribution of the estimator.

Usage

boot.lasso.proj(x, y, family = "gaussian", standardize = TRUE,
multiplecorr.method = "WY",
parallel = FALSE, ncores = getOption("mc.cores", 2L),
betainit = "cv lasso", sigma = NULL, Z = NULL, verbose = FALSE,
return.Z = FALSE, robust= FALSE,
B = 1000, boot.shortcut = FALSE,
return.bootdist = FALSE, wild = FALSE,
gaussian.stub = FALSE)

Arguments

x Design matrix (without intercept).

y Response vector.

family family

standardize Should design matrix be standardized to unit column standard deviation.
multiplecorr.method

Either "WY" or any of p.adjust.methods.

parallel Should parallelization be used? (logical)

ncores Number of cores used for parallelization.

betainit Either a numeric vector, corresponding to a sparse estimate of the coefficient
vector, or the method to be used for the initial estimation, "scaled lasso" or "cv
lasso".

sigma Estimate of the standard deviation of the error term. This estimate needs to be
compatible with the initial estimate (see betainit) provided or calculated. Other-
wise, results will not be correct.

Z user input, also see return.Z below

verbose A boolean to enable reporting on the progress of the computations. (Only prints
out information when Z is not provided by the user)

return.Z An option to return the intermediate result which only depends on the design
matrix x. This intermediate results can be used when calling the function again
and the design matrix is the same as before.

robust Uses a robust variance estimation procedure to be able to deal with model mis-
specification.
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B The number of bootstrap samples to be used.

boot.shortcut A boolean to enable the computational shortcut for the bootstrap. If set to true,
the lasso is not re-tuned for each bootstrap iteration, but it uses the tuning pa-
rameter computed on the original data instead.

return.bootdist

A boolean specifying if one is to return the computed bootstrap distributions
to the estimator. (Matrix size: ncol(x)*B) If the multiple testing method was
chosen to be WY, the bootstrap distribution computer under the complete null
hypothesis is returned as well. This option is required if one wants to compute
confidence intervals afterwards.

wild Perform the wild bootstrap based on N(0,1) distributed random variables

gaussian.stub DEVELOPER OPTION. Only enable if you know what you are doing. A
boolean to run stub code instead of actually bootstrapping the estimator. It gen-
erates a finite sample distribution for each estimate by sampling B samples from
N(0,\hat{s.e.}_j^2). (Note: we do not sample from the multivariate gaussian
with the covariance matrix. Therefore, no dependencies are modelled at all.)
Useful for debugging and for checking if the bootstrap is way off for some rea-
son.

Value

pval Individual p-values for each parameter.

pval.corr Multiple testing corrected p-values for each parameter.

sigmahat σ̂ coming from the scaled lasso.

Z Only different from NULL if the option return.Z is on. This is an intermediate
result from the computation which only depends on the design matrix x. These
are the residuals of the nodewise regressions.

B The number of bootstrap samples used.

boot.shortcut If the bootstrap shortcut has been used or not.

lambda What tuning parameter was used for the bootstrap shortcut. NULL if no shortcut
was used or if no valid lambda was available to use for the shortcut.

cboot.dist Only different from NULL if the option return.bootdist is on. This is a ncol(x)*B
matrix where each row contains the computed centered bootstrap distribution for
that estimate.

cboot.dist.underH0

Only different from NULL if the option return.bootdist is on and if the multiple
testing method is WY. This is a ncol(x)*B matrix where each row contains the
computed centered bootstrap distribution for that estimate. These bootstrap dis-
tributions were computed under the complete null hypothesis (b_1 = ... = b_p =
0).

Author(s)

Ruben Dezeure
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References

van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confi-
dence regions and tests for high-dimensional models. Annals of Statistics 42, 1166–1202._

Zhang, C., Zhang, S. (2014) Confidence intervals for low dimensional parameters in high dimen-
sional linear models. Journal of the Royal Statistical Society: Series B 76, 217–242.

Bühlmann, P. and van de Geer, S. (2015) High-dimensional inference in misspecified linear models.
Electronic Journal of Statistics 9, 1449–1473.

Dezeure, R., Bühlmann, P. and Zhang, C. (2016) High-dimensional simultaneous inference with the
bootstrap http://arxiv.org/abs/1606.03940

Examples

x <- matrix(rnorm(100 * 10), nrow = 100, ncol = 10)
y <- x[,1] + x[,2] + rnorm(100)

fit.lasso <- boot.lasso.proj(x, y)
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other

## Use the computational shortcut for the bootstrap to speed up
## computations
fit.lasso.shortcut <- boot.lasso.proj(x, y, boot.shortcut = TRUE)
which(fit.lasso.shortcut$pval.corr < 0.05) # typically: '1' and '2' and no other

## Return the bootstrap distribution as well and compute confidence intervals based on it
fit.lasso.allinfo <- boot.lasso.proj(x, y, return.bootdist = TRUE)
confint(fit.lasso.allinfo, level = 0.95)
confint(fit.lasso.allinfo, parm = 1:3)

## Use the scaled lasso for the initial estimate
fit.lasso.scaled <- boot.lasso.proj(x, y, betainit = "scaled lasso")
which(fit.lasso.scaled$pval.corr < 0.05)

## Use a robust estimate for the standard error
fit.lasso.robust <- boot.lasso.proj(x, y, robust = TRUE)
which(fit.lasso.robust$pval.corr < 0.05)

clusterGroupBound Hierarchical structure group tests in linear model

Description

Computes confidence intervals for the l1-norm of groups of linear regression coefficients in a hier-
archical clustering tree.
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Usage

clusterGroupBound(x, y, method = "average",
dist = as.dist(1 - abs(cor(x))), alpha = 0.05,
eps = 0.1, hcloutput, nsplit = 11,
s = min(10, ncol(x) - 1),
silent = FALSE, setseed = TRUE, lpSolve = TRUE)

Arguments

x numeric design matrix of the regression n × p with p columns for p predictor
variables and n rows corresponding to n observations.

y numeric response variable of length n.

method a character string; the method used for constructing the hierarchical cluster-
ing tree (default: "average" for “average linkage”) via hclust. Alternatively,
you can provide your own hierarchical clustering through the optional argument
hcloutput.

dist a distance matrix can be specified on which the hierarchical clustering will be
based (see dist). The default option is that the distance between variables
will be calculated as 1 less the absolute correlation matrix. Alternatively, you
can provide your own hierarchical clustering through the optional argument
hcloutput.

alpha numeric level in (0, 1) at which the test / confidence intervals are to be con-
structed.

eps a level of eps*alpha is used and the values of different splits are aggregated using
the (1-eps) quantile. See reference below for more details.

hcloutput optionally, the value of a hclust() call. If it is provided, the arguments dist
and method are ignored.

nsplit the number of data splits used.

s the dimensionality of the projection that is used. Lower values lead to faster
computation and if n > 50, then s is set to 50 if left unspecified, to avoid
lengthy computations.

silent logical enabling progress output.

setseed a logical; if this is true (recommended), then the same random seeds are used
for all groups, which makes the confidence intervals simultaneously valid over
all groups of variables tested.

lpSolve logical; only set it to false if lpSolve() is not working on the current machine:
setting it to false will result in much slower computations; only use on small
problems.

Value

Returns a list with components

groupNumber The index of the group tested in the original hierarchical clustering tree

members A list containing the variables that belong into each testes group
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noMembers A vector containing the number of members in each group

lowerBound The lower bound on the l1-norm in each group

position The position on the x-axis of each group (used for plotting)

leftChild Gives the index of the group that corresponds to the left child node in the tested
tree (negative values correspond to leaf nodes)

rightChild Same as leftCHild for the right child of each node

isLeaf Logical vector. Is TRUE for a group if it is a leaf node in the tested tree or if both
child nodes have a zero lower bound on their group l1-norm

Author(s)

Nicolai Meinshausen

References

Meinshausen, N. (2015); JRSS B, see groupBound.

See Also

Use groupBound to compute the lower bound for selected groups of variables whereas you use this
clusterGroupBound to test all groups in a hierarchical clustering tree.

Examples

## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99

set.seed(29)
p <- 3
n <- 10

Sigma <- diag(p)
Sigma[1,2] <- Sigma[2,1] <- 0.99

x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)

## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5

y <- as.numeric(x %*% beta + rnorm(n))

out <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!

## Plot and print the hierarchical group-test
plot(out)
print(out)
out$members
out$lowerBound
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fdr.adjust Function to calculate FDR adjusted p-values

Description

Calculates FDR adjusted p-values similar to R-function p.adjust but *without* adjustment for mul-
tiplicity.

Usage

fdr.adjust(p)

Arguments

p Vector of p-values.

Details

It is assumed that the p-values are already corrected for multiplicity. P-values with a value of 1 are
currently ignored.

Value

Vector of p-values.

Author(s)

Lukas Meier

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009), P-values for high-dimensional regression,
Journal of the American Statistical Association 104, 1671-1681.

See Also

p.adjust

Examples

x <- matrix(rnorm(100 * 1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)

## Multi-splitting with lasso.firstq as model selector function
fit.multi <- multi.split(x, y, model.selector =lasso.firstq,

args.model.selector = list(q = 10))
p.adjust <- fdr.adjust(fit.multi$pval.corr)
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glm.pval Function to calculate p-values for a generalized linear model.

Description

Calculates (classical) p-values for an ordinary generalized linear model in the n > p situation.

Usage

glm.pval(x, y, family = "binomial", verbose = FALSE, ...)

Arguments

x Design matrix (without intercept).

y Response vector.

family As in glm.

verbose Logical. Should information be printed out if algorithm did not converge?

... Additional arguments to be passed to glm.

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Vector of p-values (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

## ...
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groupBound Lower bound on the l1-norm of groups of regression variables

Description

Computes a lower bound that forms a one-sided confidence interval for the group l1-norm of a
specified group of regression parameters. It is assumed that errors have a Gaussian distribution
with unknown noise level. The underlying vector that inference is made about is the l1-sparsest
approximation to the noiseless data.

Usage

groupBound(x, y, group, alpha = 0.05, eps = 0.1, nsplit = 11,
s = min(10, ncol(x) - 1), setseed = TRUE,
silent = FALSE, lpSolve = TRUE, parallel = FALSE,
ncores = getOption("mc.cores", 2L))

Arguments

x numeric design matrix of the regression n × p with p columns for p predictor
variables and n rows corresponding to n observations.

y numeric response variable of length n.

group either a numeric vector with entries in {1, ..., p} or a list with such numeric
vectors. If group is a numeric vector, this is the group of variables for which a
lower bound is computed. If group is a list, the lower bound is computed for
each group in the list.

alpha numeric level in (0, 1) at which the test / confidence interval is computed.

eps a level of eps * alpha is used and the values of different splits are aggregated
using the (1 - eps) quantile. See reference below for more details.

nsplit the number of data splits used.

s the dimensionality of the projection that is used. Lower values lead to faster
computation and if n > 50, then s is set to 50 if left unspecified, to avoid
lengthy computations.

setseed a logical; if this is true (recommended), then the same random seeds are used
for all groups, which makes the confidence intervals simultaneously valid over
all groups of variables tested.

silent logical enabling progress output.

lpSolve logical; only set it to false if lpSolve() is not working on the current machine:
setting it to false will result in much slower computations; only use on small
problems.

parallel should parallelization be used? (logical)

ncores number of cores used for parallelization.
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Details

The data are split since the noise level is unknown. On the first part of the random split, a cross-
validated lasso solution is computed, using the glmnet implementation. This estimator is used as an
initial estimator on the second half of the data. Results at level alpha are aggregated over nsplit
splits via the median of results at levels alpha/2.

Value

If group is a single numeric vector, a scalar containg the lower bound for this group of variables is
returned. If group is a list, a numeric vector is retuned where each entry corresponds to the group
of variables defined in the same order in group.

Author(s)

Nicolai Meinshausen

References

Meinshausen, N. (2015) Group bound: confidence intervals for groups of variables in sparse high
dimensional regression without assumptions on the design. Journal of the Royal Statistical Society:
Series B, 77, 923–945; doi: 10.1111/rssb.12094.

See Also

Use clusterGroupBound to test all groups in a hierarchical clustering tree.

Examples

## Create a regression problem with correlated design: p = 6, n = 50,
## block size B = 3 and within-block correlation of rho = 0.99
p <- 6
n <- 50
B <- 3
rho <- 0.99

ind <- rep(1:ceiling(p / B), each = B)[1:p]
Sigma <- diag(p)

for (ii in unique(ind)){
id <- which(ind == ii)
Sigma[id, id] <- rho

}
diag(Sigma) <- 1

x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)

## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5

y <- as.numeric(x %*% beta + rnorm(n))

https://CRAN.R-project.org/package=glmnet
https://doi.org/10.1111/rssb.12094
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## Compute lower bounds:

## Lower bound for the L1-norm of *all* variables 1-6 of the sparsest
## optimal vector
nsplit <- 4 ## to make example run fast (use larger value)
lowerBoundAll <- groupBound(x, y, 1:p, nsplit = nsplit)
cat("\nlower bound for all variables 1-6: ", lowerBoundAll, "\n")

## Compute additional lower bounds:
q()## Lower bounds for variable 1 itself, then group {1,3}, 1-2, 1-3, 2-6,
lowerBound <- groupBound(x, y, list(1, c(1,3), 1:2, 1:3, 2:6),

nsplit = nsplit)
cat("lower bound for the groups\n\t {1}, {1,3}, {1,2}, {1..3}, {2..6}:\n\t",

format(formatC(c(lowerBound))), "\n")

hdi Function to perform inference in high-dimensional (generalized) lin-
ear models

Description

Perform inference in high-dimensional (generalized) linear models using various approaches.

Usage

hdi(x, y, method = "multi.split", B = NULL, fraction = 0.5,
model.selector = NULL, EV = NULL, threshold = 0.75,
gamma = seq(0.05, 0.99, by = 0.01),
classical.fit = NULL,
args.model.selector = NULL, args.classical.fit = NULL,
verbose = FALSE, ...)

Arguments

x Design matrix (without intercept).

y Response vector.

method Multi-splitting ("multi.split") or stability-selection ("stability").

B Number of sample-splits (for "multi.split") or sub-sample iterations (for "stabil-
ity"). Default is 50 ("multi.split")or 100 ("stability"). Ignored otherwise.

fraction Fraction of data used at each of the B iterations.

model.selector Function to perform model selection. Default is lasso.cv ("multi.split") and
lasso.firstq ("stability"). Function must have at least two arguments: x (the
design matrix) and y (the response vector). Return value is the index vector of
selected columns. See lasso.cv and lasso.firstq for examples. Additional
arguments can be passed through args.model.selector.
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EV (only for "stability"). Bound(s) for expected number of false positives . Can be
a vector.

threshold (only for "stability"). Bound on selection frequency.

gamma (only for "multi.split"). Vector of gamma-values.

classical.fit (only for "multi.split"). Function to calculate (classical) p-values. Default is
lm.pval. Function must have at least two arguments: x (the design matrix) and y
(the response vector). Return value is the vector of p-values. See lm.pval for an
example. Additional arguments can be passed through args.classical.fit.

args.model.selector

Named list of further arguments for function model.selector.
args.classical.fit

Named list of further arguments for function classical.fit.

verbose Should information be printed out while computing (logical).

... Other arguments to be passed to the underlying functions.

Value

pval (only for "multi.split"). Vector of p-values.

gamma.min (only for "multi.split"). Value of gamma where minimal p-values was attained.

select (only for "stability"). List with selected predictors for the supplied values of EV.

EV (only for "stability"). Vector of corresponding values of EV.

thresholds (only for "stability"). Used thresholds.

freq (only for "stability"). Vector of selection frequencies.

Author(s)

Lukas Meier

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression.
Journal of the American Statistical Association 104, 1671–1681.

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). Journal of the
Royal Statistical Society: Series B 72, 417–473.

See Also

stability, multi.split

Examples

x <- matrix(rnorm(100 * 200), nrow = 100, ncol = 200)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)

## Multi-splitting with lasso.firstq as model selector function
fit.multi <- hdi(x, y, method = "multi.split",



lasso.cv 15

model.selector =lasso.firstq,
args.model.selector = list(q = 10))

fit.multi
fit.multi$pval.corr[1:10] ## the first 10 p-values

## Stability selection
fit.stab <- hdi(x, y, method = "stability", EV = 2)
fit.stab
fit.stab$freq[1:10] ## frequency of the first 10 predictors

lasso.cv Select Predictors via (10-fold) Cross-Validation of the Lasso

Description

Performs (n-fold) cross-validation of the lasso (via cv.glmnet) and determines the prediction opti-
mal set of parameters.

Usage

lasso.cv(x, y,
nfolds = 10,
grouped = nrow(x) > 3*nfolds,
...)

Arguments

x numeric design matrix (without intercept) of dimension n× p.

y response vector of length n.

nfolds the number of folds to be used in the cross-validation

grouped corresponds to the grouped argument to cv.glmnet. This has a smart default
such that glmnet does not give a warning about too small sample size.

... further arguments to be passed to cv.glmnet.

Details

The function basically only calls cv.glmnet, see source code.

Value

Vector of selected predictors.

Author(s)

Lukas Meier
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See Also

hdi which uses lasso.cv() by default; cv.glmnet. An alternative for hdi(): lasso.firstq.

Examples

x <- matrix(rnorm(100 * 1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
sel <- lasso.cv(x, y)
sel

lasso.firstq Determine the first q Predictors in the Lasso Path

Description

Determines the q predictors that enter the lasso path first.

Usage

lasso.firstq(x, y, q, ...)

Arguments

x numeric design matrix (without intercept) of dimension n× p.

y response vector of length n.

q number of predictors that should be selected, a positive integer.

... optional additional arguments to be passed to glmnet.

Details

The lasso.firstq function calls glmnet in a special way and simply postprocesses its nonzero
predictor list, see its source code.

Value

Vector of selected predictors.

Author(s)

Lukas Meier

See Also

hdi; the default choice for hdi(), lasso.cv. glmnet
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Examples

x <- matrix(rnorm(100 * 1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
sel <- lasso.firstq(x, y, q = 5)
sel # 5 integers from {1,2, ..., 1000}, including '1' and '2', typically

lasso.proj P-values based on lasso projection method

Description

Compute p-values based on the lasso projection method, also known as the de-sparsified Lasso,
using an asymptotic gaussian approximation to the distribution of the estimator.

Usage

lasso.proj(x, y, family = "gaussian", standardize = TRUE,
multiplecorr.method = "holm", N = 10000,
parallel = FALSE, ncores = getOption("mc.cores", 2L),
betainit = "cv lasso", sigma = NULL, Z = NULL, verbose = FALSE,
return.Z = FALSE, suppress.grouptesting = FALSE, robust = FALSE,

do.ZnZ = FALSE)

Arguments

x Design matrix (without intercept).

y Response vector.

family family

standardize Should design matrix be standardized to unit column standard deviation.
multiplecorr.method

Either "WY" or any of p.adjust.methods.

N Number of empirical samples (only used if multiplecorr.method == "WY")

parallel Should parallelization be used? (logical)

ncores Number of cores used for parallelization.

betainit Either a numeric vector, corresponding to a sparse estimate of the coefficient
vector, or the method to be used for the initial estimation, "scaled lasso" or "cv
lasso".

sigma Estimate of the standard deviation of the error term. This estimate needs to be
compatible with the initial estimate (see betainit) provided or calculated. Other-
wise, results will not be correct.

Z user input, also see return.Z below

verbose A boolean to enable reporting on the progress of the computations. (Only prints
out information when Z is not provided by the user)
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return.Z An option to return the intermediate result which only depends on the design
matrix x. This intermediate results can be used when calling the function again
and the design matrix is the same as before.

suppress.grouptesting

A boolean to optionally suppress the preparations made for testing groups. This
will avoid quite a bit of computation and memory usage. The output will also
be smaller.

robust Uses a robust variance estimation procedure to be able to deal with model mis-
specification.

do.ZnZ Use a slightly different way of choosing tuning parameters to compute Z, called
Z&Z based on Zhang and Zhang (2014). This choice of tuning parameter results
in a slightly higher variance of the estimator. More concretely, it achieves a 25
variance of the estimator (over j=1..ncol(x)) in comparison to tuning with cross-
validation.

Value

pval Individual p-values for each parameter.

pval.corr Multiple testing corrected p-values for each parameter.

groupTest Function to perform groupwise tests. Groups are indicated using an index vector
with entries in 1,...,p or a list thereof.

clusterGroupTest

Function to perform groupwise tests based on hierarchical clustering. You can
either provide a distance matrix and clustering method or the output of hierarchi-
cal clustering from the function hclust as for clusterGroupBound. P-values
are adjusted for multiple testing.

sigmahat σ̂ coming from the scaled lasso.

Z Only different from NULL if the option return.Z is on. This is an intermediate
result from the computation which only depends on the design matrix x. These
are the residuals of the nodewise regressions.

Author(s)

Ruben Dezeure

References

van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confi-
dence regions and tests for high-dimensional models. Annals of Statistics 42, 1166–1202._

Zhang, C., Zhang, S. (2014) Confidence intervals for low dimensional parameters in high dimen-
sional linear models. Journal of the Royal Statistical Society: Series B 76, 217–242.

Bühlmann, P. and van de Geer, S. (2015) High-dimensional inference in misspecified linear models.
Electronic Journal of Statistics 9, 1449–1473.
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Examples

x <- matrix(rnorm(100 * 10), nrow = 100, ncol = 10)
y <- x[,1] + x[,2] + rnorm(100)
fit.lasso <- lasso.proj(x, y)
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other

## Group-wise testing of the first two coefficients
fit.lasso$groupTest(1:2)

##Compute confidence intervals
confint(fit.lasso, level = 0.95)

## Hierarchical testing using distance matrix based on
## correlation matrix
out.clust <- fit.lasso$clusterGroupTest()
plot(out.clust)

## Fit the lasso projection method without doing the preparations
## for group testing (saves time and memory)
fit.lasso.faster <- lasso.proj(x, y, suppress.grouptesting = TRUE)

## Use the scaled lasso for the initial estimate
fit.lasso.scaled <- lasso.proj(x, y, betainit = "scaled lasso")
which(fit.lasso.scaled$pval.corr < 0.05)

## Use a robust estimate for the standard error
fit.lasso.robust <- lasso.proj(x, y, robust = TRUE)
which(fit.lasso.robust$pval.corr < 0.05)

## Perform the Z&Z version of the lasso projection method
fit.lasso <- lasso.proj(x, y, do.ZnZ = TRUE)

which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other

lm.ci Function to calculate confidence intervals for ordinary multiple linear
regression.

Description

Calculates (classical) confidence intervals for an ordinary multiple linear regression model in the n
> p situation.

Usage

lm.ci(x, y, level = 0.95, ...)
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Arguments

x Design matrix (without intercept).

y Response vector.

level Coverage level.

... Additional arguments to be passed to lm.

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Matrix of confidence interval bounds (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

x <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
ci <- lm.ci(x, y)
ci

lm.pval Function to calculate p-values for ordinary multiple linear regression.

Description

Calculates (classical) p-values for an ordinary multiple linear regression in the n > p situation.

Usage

lm.pval(x, y, exact = TRUE, ...)

Arguments

x Design matrix (without intercept).

y Response vector.

exact Logical. TRUE if p-values based on t-distribution should be calculated. FALSE
if normal distribution should be used as approximation.

... Additional arguments to be passed to lm.
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Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Vector of p-values (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

x <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
pval <- lm.pval(x, y)
pval

multi.split Calculate P-values Based on Multi-Splitting Approach

Description

Calculate p-values and confidence intervals based on the multi-splitting approach

Usage

multi.split(x, y, B = 100, fraction = 0.5, ci = TRUE, ci.level = 0.95,
model.selector = lasso.cv,
classical.fit = lm.pval, classical.ci = lm.ci,
parallel = FALSE, ncores = getOption("mc.cores", 2L),
gamma = seq(ceiling(0.05 * B) / B, 1 - 1 / B, by = 1 / B),
args.model.selector = NULL, args.classical.fit = NULL,
args.classical.ci = NULL,
return.nonaggr = FALSE, return.selmodels = FALSE,
repeat.max = 20,
verbose = FALSE)
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Arguments

x numeric design matrix (without intercept).

y numeric response vector.

B the number of sample-splits, a positive integer.

fraction a number in (0, 1), the fraction of data used at each sample split for the model
selection process. The remaining data is used for calculating the p-values.

ci logical indicating if a confidence interval should be calculated for each parame-
ter.

ci.level (if ci is true:) a number in (0, 1), typically close to 1, the desired coverage level
of the confidence intervals.

model.selector a function to perform model selection, with default lasso.cv. The function
must have at least two arguments, x (the design matrix) and y (the response
vector). Return value is the index vector of selected columns. See lasso.cv
and lasso.firstq for an example. Additional arguments can be passed via
args.model.selector.

classical.fit a function to calculate (classical) p-values. Default is lm.pval. The function
must have at least two arguments, x (the design matrix) and y (the response vec-
tor), and return the vector of p-values. See lm.pval for an example. Additional
arguments can be passed through args.classical.fit.

classical.ci a function to calculate (classical) confidence intervals. Default is lm.ci. The
function must have at least 3 arguments, x (the design matrix), y (the response
vector) and level (the coverage level), and return the matrix of confidence in-
tervals. See lm.ci for an example. Additional arguments can be passed through
args.classical.ci.

parallel logical indicating if parallelization via mclapply should be used.

ncores number of cores used for parallelization as mc.cores in mclapply().

gamma vector of gamma-values. In case gamma is a scalar, the value Qj instead of Pj

is being calculated (see reference below).
args.model.selector

named list of further arguments for function model.selector.
args.classical.fit

named list of further arguments for function classical.fit.
args.classical.ci

named list of further arguments for function classical.ci.

return.nonaggr logical indicating if the unadjusted p-values be returned.
return.selmodels

logical indicating if the selected models (at each split) should be returned.
Necessary for the clusterGroupTest() part of the result.

repeat.max positive integer indicating the maximal number of split trials. Should not matter
in regular cases, but necessary to prevent infinite loops in borderline cases.

verbose should information be printed out while computing? (logical).
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Value

pval.corr Vector of multiple testing corrected p-values.

gamma.min Value of gamma where minimal p-values was attained.
clusterGroupTest

Function to perform groupwise tests based on hierarchical clustering. You can
either provide a distance matrix and clustering method or the output of hierarchi-
cal clustering from the function hclust as for clusterGroupBound. P-values
are adjusted for multiple testing.

Author(s)

Lukas Meier, Ruben Dezeure, Jacopo Mandozzi

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression.
Journal of the American Statistical Association 104, 1671–1681.

Mandozzi, J. and Bühlmann, P. (2015) A sequential rejection testing method for high-dimensional
regression with correlated variables. To appear in the International Journal of Biostatistics. Preprint
arXiv:1502.03300

See Also

lasso.cv, lasso.firstq; lm.pval, lm.ci.

Examples

n <- 40 # a bit small, to keep example "fast"
p <- 256
x <- matrix(rnorm(n * p), nrow = n, ncol = p)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(n)

## Multi-splitting with lasso.firstq as model selector function
## 'q' must be specified
fit.multi <- multi.split(x, y, model.selector = lasso.firstq,

args.model.selector = list(q = 10))
fit.multi
head(fit.multi$pval.corr, 10) ## the first 10 p-values
ci. <- confint(fit.multi)
head(ci.) # the first 6
stopifnot(all.equal(ci.,

with(fit.multi, cbind(lci, uci)), check.attributes=FALSE))

## Use default 'lasso.cv' (slower!!) -- incl cluster group testing:
system.time(fit.m2 <- multi.split(x, y, return.selmodels = TRUE))# 9 sec (on "i7")
head(fit.m2$pval.corr) ## the first 6 p-values
head(confint(fit.m2)) ## the first 6 95% conf.intervals

## Now do clustergroup testing
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clGTst <- fit.m2$clusterGroupTest
names(envGT <- environment(clGTst))# about 14
if(!interactive()) # if you are curious (and advanced):

print(ls.str(envGT), max = 0)
stopifnot(identical(clGTst, envGT$clusterGroupTest))
ccc <- clGTst()
str(ccc)
ccc$hh # the clustering
has.1.or.2 <- sapply(ccc$clusters,

function(j.set) any(c(1,2) %in% j.set))
ccc$pval[ has.1.or.2] ## all very small
ccc$pval[!has.1.or.2] ## all 1

plot.clusterGroupBound

Plot output of hierarchical testing of groups of variables

Description

The plot() method for "clusterGroupBound" objects plots the outcome of applying a lower
bound on the l1-norm on groups of variables in a hierarchical clustering tree.

Usage

## S3 method for class 'clusterGroupBound'
plot(x, cexfactor = 1, yaxis = "members",

xlab = "", col = NULL, pch = 20, ...)

Arguments

x an object of class "clusterGroupBound", as resulting from clusterGroupBound().

cexfactor numeric expansion factor for the size of the node symbols.

yaxis a string; for the default "members", the hierarchical tree is shown as function of
cluster size on the y-axis, whereas the node sizes are proportional to the lower
l1-norm of the respective groups of variables. If yaxis takes any different value,
then this is reversed and the tree is shown against the lower l1-norm on the y-
axis, while node sizes are now proportional to the number of elements in each
cluster.

xlab label used for the x-axis; by default none.

col the colour of the symbols for the nodes.

pch the plot symbol (see points) of the symbols for the nodes.

... optional additional arguments passed to plot.default.

Value

Nothing is returned
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Author(s)

Nicolai Meinshausen <meinshausen@stat.math.ethz.ch>

See Also

Use clusterGroupBound() to test all groups in a hierarchical clustering tree. Use groupBound()
to compute the lower bound for selected groups of variables.

Examples

## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99

set.seed(29)
p <- 3
n <- 10

Sigma <- diag(p)
Sigma[1,2] <- Sigma[2,1] <- 0.99

x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)

## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5

y <- as.numeric(x %*% beta + rnorm(n))

## Compute the lower bound for all groups in a hierarchical clustering tree
cgb5 <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!

## Plot the tree with y-axis proportional to the (log) of the number of
## group members and node sizes proportional to the lower l1-norm bound.
plot(cgb5)

## Show the lower bound on the y-axis and node sizes proportional to
## number of group members
plot(cgb5, yaxis = "")

riboflavin Riboflavin data set

Description

Dataset of riboflavin production by Bacillus subtilis containing n = 71 observations of p = 4088
predictors (gene expressions) and a one-dimensional response (riboflavin production).
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Usage

data(riboflavin)

Format

y Log-transformed riboflavin production rate (original name: q_RIBFLV).

x (Co-)variables measuring the logarithm of the expression level of 4088 genes.

Details

Data kindly provided by DSM (Switzerland).

References

Bühlmann, P., Kalisch, M. and Meier, L. (2014) High-dimensional statistics with a view towards
applications in biology. Annual Review of Statistics and its Applications 1, 255–278

Examples

data(riboflavin)

ridge.proj P-values based on ridge projection method

Description

Compute p-values for lasso-type regression coefficients based on the ridge projection method.

Usage

ridge.proj(x, y, family = "gaussian", standardize = TRUE,
lambda = 1, betainit = "cv lasso", sigma = NULL,
suppress.grouptesting = FALSE,
multiplecorr.method = "holm", N = 10000)

Arguments

x design matrix (without intercept).

y response vector.

family family

standardize Should design matrix be standardized to unit column standard deviation (logi-
cal)?

lambda Value of penalty parameter lambda (ridge regression).

betainit Either a numeric vector, corresponding to a sparse estimate of the coefficient
vector, or the method to be used for the initial estimation, "scaled lasso" or "cv
lasso".
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sigma Estimate of the standard deviation of the error term. This estimate needs to be
compatible with the initial estimate (see betainit) provided or calculated. Other-
wise, results won’t be correct.

suppress.grouptesting

A boolean to optionally suppress the preparations made for testing groups. This
will avoid quite a bit of computation and memory usage. The output will also
be smaller.

multiplecorr.method

Either "WY" or any of p.adjust.methods.

N number of empirical samples (only used if multiplecorr.method = "WY").

Value

pval Individual p-values for each parameter.

pval.corr Multiple testing corrected p-values for each parameter.

groupTest Function to perform groupwise tests. Groups are indicated using an index vector
with entries in 1, . . . , p or a list thereof.

clusterGroupTest

Function to perform groupwise tests based on hierarchical clustering. You can
either provide a distance matrix and clustering method or the output of hierarchi-
cal clustering from the function hclust as for clusterGroupBound. P-values
are adjusted for multiple testing.

sigmahat σ̂ coming from the scaled lasso.

Author(s)

Peter Buehlmann, Ruben Dezeure, Lukas Meier

References

Bühlmann, P. (2013) Statistical significance in high-dimensional linear models. Bernoulli 19, 1212–
1242.

Examples

x <- matrix(rnorm(100 * 100), nrow = 100, ncol = 100)
y <- x[,1] + x[,2] + rnorm(100)
fit.ridge <- ridge.proj(x, y)
which(fit.ridge$pval.corr < 0.05)

## Use the scaled lasso for the initial estimate
fit.ridge.scaled <- ridge.proj(x, y, betainit = "scaled lasso")
which(fit.ridge.scaled$pval.corr < 0.05)

## Group-wise testing of the first two coefficients
fit.ridge$groupTest(1:2)

## Hierarchical testing using distance matrix based on
## correlation matrix
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out.clust <- fit.ridge$clusterGroupTest()
plot(out.clust)

## Fit the method without doing the preparations
## for group testing (saves time and memory)
fit.ridge.faster <- ridge.proj(x, y, suppress.grouptesting = TRUE)

rXb Generate Data Design Matrix X and Coefficient Vector β

Description

Generate a random design matrix X and coefficient vector β useful for simulations of (high dimen-
sional) linear models. In particular, the function rXb() can be used to exactly recreate the reference
linear model datasets of the hdi paper.

Usage

rXb(n, p, s0,
xtype = c("toeplitz", "exp.decay", "equi.corr"),
btype = "U[-2,2]",
permuted = FALSE, iteration = NA, do2S = TRUE,
x.par = switch(xtype,

"toeplitz" = 0.9,
"equi.corr" = 0.8,
"exp.decay" = c(0.4, 5)),

verbose = TRUE)

rX(n, p, xtype, permuted, do2S = TRUE,
par = switch(xtype,

"toeplitz" = 0.9,
"equi.corr" = 0.8,
"exp.decay" = c(0.4, 5)))

Arguments

n integer; the sample size n (paper had always n = 100).

p integer; the number of coefficients in the linear model. (paper had always p =
500).

s0 integer number of nonzero coefficients desired in the model; hence at most p.

xtype a character string specifying the type of design matrix one wants to generate.
Must be one of "toeplitz", "equi.corr" or "exp.decay".

btype a character string specifying the type of nonzero coefficients (“beta”) one
wants to generate. In the hdi paper, this has been one of "U[-2,2]", "U[0,2]",
"U[0,4]", "bfix1", "bfix2" and "bfix10". In general, any string of the form
"U[a,b]" or "bfix<c>" is allowed, where a, b, and <c> must be numbers (with
a ≤ b).
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permuted logical specifying if the columns of the design matrix should be permuted.

iteration integer or NA specifying if seeds should be set to generate reproducible real-
izations of the design type and coefficients type. NA corresponds to not setting
seeds. Iteration numbers 1 to 50 correspond to the setups from the paper. If
a seed is set, the original .Random.seed at the point of entering the function
is saved and is restored upon exit of the data generation. If NA, the current
.Random.seed is taken as usual in R.

do2S logical indicating if in the case of xtypes "toeplitz" or "equi.corr", the
p × p covariance matrix should be inverted twice. Must be true, to regenerate
the X matrices from the hdi paper exactly “to the last bit”.

x.par, par the parameters to be used for the design matrix. Must be a numeric vector of
length one or two. The default uses the parameters also used in the hdi paper.

verbose should the function give a message if seeds are being set? (logical).

Details

Generation of the design matrix X:
For all xtype’s, the X matrix will be multivariate normal, with mean zero and (co)variance matrix
Σ =C determined from xtype, x.par and p as follows:

xtype = "toeplitz": C <- par ^ abs(toeplitz(0:(p-1)))

xtype = "equi.corr": Σi,j = par for i ̸= j, and = 1 for i = j, i.e., on the diagonal.

xtype = "exp.decay": C <- solve(par[1] ^ abs(toeplitz(0:(p-1)) / par[2]))

Value

For rXb(): A list with components

x the generated n× p design matrix X .
beta the generated coefficient vector β (‘beta’).

For rX(): the generated n× p design matrix X .

Author(s)

Ruben Dezeure <dezeure@stat.math.ethz.ch>

References

Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015) High-dimensional inference:
confidence intervals, p-values and R-software hdi. Statistical Science 30, 533–558.

Examples

## Generate the first realization of the linear model with design matrix
## type Toeplitz and coefficients type uniform between -2 and 2

dset <- rXb(n = 80, p = 20, s0 = 3,
xtype = "toeplitz", btype = "U[-2,2]")

x <- dset$x
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beta <- dset$beta

## generate 100 response vectors of this linear model
y <- as.vector( x %*% beta ) + replicate(100, rnorm(nrow(x)))

## Use 'beta_min' fulfilling beta's (non standard 'btype'):
str(ds2 <- rXb(n = 50, p = 12, s0 = 3,

xtype = "exp.decay", btype = "U[0.1, 5]"))

## Generate a design matrix of type "toeplitz"
set.seed(3) # making it reproducible
X3 <- rX(n = 800, p = 500, xtype = "toeplitz", permuted = FALSE)

## permute the columns
set.seed(3)
Xp <- rX(n = 800, p = 500, xtype = "toeplitz", permuted = TRUE)

stability Function to perform stability selection

Description

Function to perform stability selection

Usage

stability(x, y, EV, threshold = 0.75, B = 100, fraction = 0.5,
model.selector = lasso.firstq, args.model.selector = NULL,
parallel = FALSE, ncores = getOption("mc.cores", 2L),
verbose = FALSE)

Arguments

x Design matrix (without intercept).

y Response vector.

EV Bound for expected number of false positives.

threshold Threshold for selection frequency. Must be in (0.5, 1).

B Number of sub-sample iterations.

fraction Fraction of data used at each of the B sub-samples.

model.selector Function to perform model selection. Default is lasso.firstq. User supplied
function must have at least three arguments: x (the design matrix), y (the re-
sponse vector) and q (the maximal model size). Return value is the index vector
of selected columns. See lasso.firstq for an example. Additional arguments
can be passed through args.model.selector.

args.model.selector

Named list of further arguments for function model.selector.
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parallel Should parallelization be used? (logical)

ncores Number of cores used for parallelization.

verbose Should information be printed out while computing (logical).

Value

selected Vector of selected predictors.

freq Vector of selection frequencies.

q Size of fitted models in order to control error rate at desired level.

Author(s)

Lukas Meier

References

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). Journal of the
Royal Statistical Society: Series B 72, 417–473.

Bühlmann, P., Kalisch, M. and Meier, L. (2014) High-dimensional statistics with a view towards
applications in biology. Annual Review of Statistics and its Applications 1, 255–278

Examples

x <- matrix(rnorm(100 * 1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
fit.stab <- stability(x, y, EV = 1)
fit.stab
fit.stab$freq[1:10] ## selection frequency of the first 10 predictors
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